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Introduction

I A problem that arises in engineering, economics, medicine, and other
areas is that of investigating the relationship between two (or more)
variables. In such settings, the goal is to model a continuous random
variable Y as a function of one (or more) independent variables, say,
x1, x2, ..., xp. Mathematically, we can express this model as

Y = g(x1, x2, ..., xp) + ε

where g is called a regression model.

I ε is the random error, which indicates that the relationship bettwen
Y and x1, x2, ..., xp through g is not deterministic.

I ε is where the variability comes from.

I ε is the reason why regression models are treated as statistical
models.
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Linear Regression Model

I Let’s consider the model

Y = g(x1, x2, ..., xk) + ε

Y = β0 + β1x1 + β2x2 + ...+ βpxp + ε

where g is a linear function of β0, β1, ..., βp. We call this a linear
regression model.

I Y is called response/dependent variable. (random, observed)

I x1, x2, ..., xp are called explanatory/independent variables. (fixed,
observed)

I β0, β1, ..., βp are called regression parameters. (fixed,
unknown/unobserved)

I ε is the random error term. (random, unknown/unobserved)
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Simple Linear Regression

I In the case of only one explantory/independent variable, x , the linear
regression model becomes

Y = β0 + β1x + ε

which is called Simple Linear Regression Model.

I Note that g(x) = β0 + β1x
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An Motivational Example

I As part of a waste removal project, a new compression machine for
processing sewage sludge is being studied. In particular, engineers
are interested in the following variables:

Y = moisture control of compressed pellets (measured as a percent)

x = machine filtration rate (kg-DS/m/hr).

I Engineers collect n = 20 observations of (x ,Y ).
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An Motivational Example

I No simple curve passed exactly through all the points.

I All the points scattered randomly around a straight line.

I It is reasonable to assume that the mean of the random variable
Y is related to x by the following straight-line relationship:

E (Y ) = β0 + β1x

I Regression coefficients: β0 (intercept), β1 (slope)

I Naturally, a statistical model is

Y = β0 + β1x + ε

I We assume that E (ε) = 0 and Var(ε) = σ2
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Properties of Simple Linear Regression

I β0 quantifies the mean of Y when x = 0.

I β1 quantifies the change in E (Y ) brought about by a one-unit
change in x

I For the model Y = β0 + β1x + ε, we have

E (Y ) = E (β0 + β1x + ε) = β0 + β1x + E (ε) = β0 + β1x ,

and
Var (Y ) = Var (β0 + β1x + ε) = Var (ε) = σ2.
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How to Find the Regression Line?

I When we want to use simple linear regression model (a stright line)
to fit the data, we want to find the line which is the closest to the
observations points.

I What is the meaning of closest?

I Closest means smallest sum of squared distances (green line
segaments).
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Least Squares Method

I The method which finds the stright line whose sumation of
squared distances to observation points are smallest is called the
Method of Least Squares (LS).

I Least squares says to choose the values β0 and β1 that minimize

Q(β0, β1) =
n∑

i=1

[Yi − (β0 + β1xi )]2.

I Recall that we can minimize or maximize a multivariable
function by taking the derivatives with respect to each
arguments and set them to 0. So, taking partial derivative of
Q(β0, β1), we obtain

∂Q(β0, β1)

∂β0
= −2

n∑
i=1

(Yi − β0 − β1xi )
set
= 0

∂Q(β0, β1)

∂β1
= −2

n∑
i=1

(Yi − β0 − β1xi )xi
set
= 0
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Least Squares Estimators

I Solve above system of equations yields the least squares
estimators

β̂0 = Y − β̂1x

β̂1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
=

SSxy
SSxx

.

I SSxy =
∑n

i=1(xi − x)(Yi − Y ) is the Sum of Cross-deviations of
Y and x .

I SSxx =
∑n

i=1(xi − x)2 is Sum of Squared deviations of x .

I x̄ = 1
n

∑
i=1n xi and Ȳ = 1

n

∑
i=1n Yi

I Therefore, the estimator of Y (given x) is

Ŷ = β̂0 + β̂1x

10 / 70



Fit with R

I In real life, it is rarely necessary to calculate β̂0 and β̂1 by hand.
I Let’s see how to use R to fit a regression model in the waste

removal project example

#enter the data
filtration.rate=c(125.3,98.2,201.4,147.3,145.9,124.7,112.2,120.2,161.2,178.9,

159.5,145.8,75.1,151.4,144.2,125.0,198.8,132.5,159.6,110.7)
moisture=c(77.9,76.8,81.5,79.8,78.2,78.3,77.5,77.0,80.1,80.2,79.9,

79.0,76.7,78.2,79.5,78.1,81.5,77.0,79.0,78.6)

# Fit the model
fit = lm(moisture~filtration.rate)
fit
Call:
lm(formula = moisture ~ filtration.rate)
Coefficients:

(Intercept) filtration.rate
72.95855 0.04103
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Solution of LSE

I From the output, we see that the least squares estimates are
β̂0 = 72.959, and β̂1 = 0.041.

I Therefore, the equation of the least squares line that relates
moisture percentage Y to the filtration rate x is

Ŷ = 72.959 + 0.041x .

That is to say an estimate of expected moisture is given by

M̂oisture = 72.959 + 0.041× Filtration rate.

I The least squares line is also called prediction equation. We can
predict the mean response E (Y ) for any value of x . For
example, when the filtration rate is x = 150kg· DS/m/hr, we
would predict the mean moisture percentage to be

Ŷ (150) = 72.959 + 0.041(150) = 79.109.
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Scatter Plot with Least Squares Line

plot(filtration.rate,moisture,xlab = "Filtration rate (kg-DS/m/hr)",
ylab = "Moisture (Percentage)",pch=16)

abline(fit)
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Model Assumptions

I The simple linear regression model is

Yi = β0 + β1xi + εi , i = 1, 2, ..., n

We assume the error term εi follows
I E(εi ) = 0, for i = 1, 2, . . . , n
I Var (εi ) = σ2, for i = 1, 2, . . . , n, i.e., the variance is constant
I the random variable εi are independent
I the random variable εi are normally distributed

I Those assumptions of the error terms can be summarized as

ε1, ε2, . . . , εn
i.i.d.∼ N (0, σ2),

where i .i .d . stands for independent and identically
distributed.
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Model Assumptions

I Under the assumption

ε1, ε2, . . . , εn
i.i.d.∼ N (0, σ2)

it follows that
Yi ∼ N (β0 + β1xi , σ

2)

I In this normal distribution, we have three unknown but fixed
parameters to estimate, namely, β0, β1, and σ2.
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Pictorial Illustration of Model Assumptions
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Estimating σ2

I We can use least squares method to estimate β0 and β1.

I The residuals
ei = yi − ŷi

are used to obtain an estimator of σ2. The sum of squares of
the residuals, often called the error sum of squares, is

SSE =
n∑

i=1

e2i =
n∑

i=1

(yi − ŷi )
2.

I Fact: E (SSE ) = (n − 2)σ2.

I Using fact, therefore, an unbiased estimator of σ2 is

σ̂2 =
SSE

n − 2

σ̂2 is also called mean squared error (MSE).
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Calculating σ̂2 in R

In R, predict(fit) gives the predicted value at each xi , namely,
Ŷ (x1), Ŷ (x2), . . . , Ŷxn .

> fit = lm(moisture~filtration.rate)

> fitted.values = predict(fit)

> residuals = moisture-fitted.values

> # Calculate MSE

> sum(residuals^2)/18

[1] 0.4426659

We have σ̂2 = MSE = 0.443.
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Properties of Least Squares Estimators

I Recall that

β̂0 = Y − β̂1x

β̂1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
=

SSxy
SSxx

.

I β̂0 and β̂1 are functions of Yi , so they are random variables and
have their sampling distributions.

I It can be shown that

β̂0 ∼ N
(
β0,

(
1

n
+

x2

SSxx

)
σ2

)
and β̂1 ∼ N

(
β1,

σ2

SSxx

)
I Note that both β̂0 and β̂1 are unbiased.
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Properties of Least Squares Estimators

I Since σ2 is unknown, the estimated standard error of β̂0 and
β̂1 are

ŝe(β̂0) =

√(
1

n
+

x2

SSxx

)
σ̂2

ŝe(β̂1) =

√
σ̂2

SSxx

where σ̂2 = SSE
n−2 .

I Given β̂0 and β̂1 are both normal and the value of standard
errors can be estimated, we are able to conduct hypothesis tests
(as well as find confidence intervals) on them.
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Hypothesis Tests in Simple Linear Regression

I An important part of assessing the adequacy of a linear
regression model is testing statistical hypotheses about the
model parameters and constructing certain confidence intervals.

I In practice, inference for the slope parameter β1 is of primary
interest because of its connection to the independent variable x
in the model.

I Inference for β0 is less meaningful, unless one is explicitly
interested in the mean of Y when x = 0. We will focus on
inference on β1.

I Under the model assumptions, the following sampling
distribution arises:

t =
β̂1 − β1

ŝe(β̂1)
=

β̂1 − β1√
σ̂2/SSxx

∼ t(n − 2)
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Confidence Interval of β̂1

I The sampling distribution of β̂1 leads to the following
(1− α)100% confidence interval of β1:

β̂1︸︷︷︸
Point Estimate

± tα/2,n−2︸ ︷︷ ︸
Quantile

√
σ̂2/SSxx︸ ︷︷ ︸

standard error

I Note that this is two-sided confidence interval, which
corresponds to the test H0 : β1 = 0 against Ha : β1 6= 0.

I If ‘0‘” is covered by this interval, we fail to reject H0 at
significance level of α. This suggests that Y and x are not
linearly related.

I If ‘0‘” is not covered by this interval, we reject H0 at significance
level of α. This suggests that Y and x are linearly related.
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Hypothesis Test for β1

I Suppose we want to test β1 equals to a certain value, say β1,0,
that is our interest is to test

H0 : β1 = β1,0 versus Ha : β1 6= β1,0

where β1,0 is often set to 0 (why?)

I The test statistic under the null is

t0 =
β̂1 − β1,0√
σ̂2/SSxx

∼ t(n − 2).

I The p-value of the test is 2P(Tn−2 < −|t0|), you can use R to
find this probability. Remember that smaller p-value provide
stronger evidence against H0

I Let us look at removal project example.
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Removal Project Example

We wish to test H0 : β1 = 0 against Ha : β1 6= 0.

fit = lm(moisture~filtration.rate)
summary(fit)

Call:
lm(formula = moisture ~ filtration.rate)

Residuals:
Min 1Q Median 3Q Max

-1.39552 -0.27694 0.03548 0.42913 1.09901

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 72.958547 0.697528 104.596 < 2e-16 ***
filtration.rate 0.041034 0.004837 8.484 1.05e-07 ***
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.6653 on 18 degrees of freedom
Multiple R-squared: 0.7999, Adjusted R-squared: 0.7888
F-statistic: 71.97 on 1 and 18 DF, p-value: 1.052e-07

Note that the residual standard error is
√
σ̂2 =

√
MSE = 0.6653.
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Removal Project Example

I R result is
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 72.958547 0.697528 104.596 < 2e-16 ***
filtration.rate 0.041034 0.004837 8.484 1.05e-07 ***

I For β1, we have β̂1 = 0.0410, se(β̂1) = 0.0048, and by t-table
t18,0.025 = 2.1009

I The 95% confidence interval is

β̂1±t18,0.025se(β̂1) = 0.0410±2.1009(0.0048) = (0.0309, 0.0511)

I The p-value of t test H0 : β1 = 0 against Ha : β1 6= 0 is less
than 1.05× 10−7 ≈ 0.

I What is your conclusion?
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Confidence and prediction intervals for a given x = x0

I Consider the simple linear regression model

Yi = β0 + β1xi + εi ,

I We are interested in using the fitted model to learn about the
response variable Y at a certain setting for the independent
variable, say, x = x0.

I Two potential goals:
I Estimating the mean response of Y . This value, E(Y |x0), is

the mean of the following probability distribution

N (β0 + β1x0, σ
2)

I Predicting a new response Y , denoted by Y ∗(x0). This value is
one new outcome from

N (β0 + β1x0, σ
2)
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Confidence and prediction intervals for a given x = x0

I Two potential goals:
I Estimating the mean response of Y .
I Predicting a new response Y .

I Difference: In the first problem, we are estimating the mean of
a distribution. In the second problem, we are predicting the
value of a new response from this distribution. The second
problem is more difficult than the first one.

I Goals: We would like to create 100(1− α)% intervals for the
mean E (Y |x0) and for the new value Y ∗(x0).

I The former is called a confidence interval and the latter is
called a prediction interval.
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Confidence and prediction intervals for a given x = x0

I A 100(1− α)% confidence interval for the mean E (Y |x0) is

Ŷ (x0)± tn−2,α/2

√
σ̂2

[
1

n
+

(x0 − x)2

Sxx

]
I A 100(1− α)% prediction interval for the new value Y ∗(x0) is

Ŷ (x0)± tn−2,α/2

√
σ̂2

[
1 +

1

n
+

(x0 − x)2

Sxx

]
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Confidence and prediction intervals for a given x = x0

I Note that the prediction interval is wider than the confidence
interval! The extra ”1” in the prediction interval’s standard
error arises from the additional uncertainty associated with
predicting a new response from the distribution.

I The length of the interval is smallest when x0 = x and will get
larger the farther x0 is from x in either direction.

I Warning: It can be very dangerous to estimate E (Y |x0) or
predict Y ∗(x0) based on the fit of the model for values of x0
outside the range of x values used in the experiment/study.
This is called extrapolation.
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Removal Project Example

In the removal Project example, suppose that we are interested in
estimating E (Y |x0) and predicting a new Y ∗(x0) when the filtration
rate is x0 = 150.

I E (Y |x0) denotes the mean moisture percentage for compressed
pellets when the machine filtration rate is x0 = 150.

I Y ∗(x0) denotes a possible value of Y for a single run of the
machine when the filtration rate is set at x0 = 150.
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Removal Project Example

I Confidence interval:
> predict(fit,data.frame(filtration.rate=150),level=0.95,interval="confidence")

fit lwr upr
1 79.11361 78.78765 79.43958

I Prediction interval:
> predict(fit,data.frame(filtration.rate=150),level=0.95,interval="prediction")

fit lwr upr
1 79.11361 77.6783 80.54893

I Interpretation
I A 95% confidence interval for E(Y |x0 = 150) is (78.79, 79.44).

When the filtration rate is x0 = 150 kg-DS/m/hr, we are 95%
confident that the mean moisture percentage is between 78.79
and 79.44 percent.

I A 95 percent prediction interval for Y ∗(x0 = 150) is
(77.68, 80.55). When the filtration rate is x0 = 150
kg-DS/m/hr, we are 95% confident that the moisture
percentage for a single run of the experiment will be between
77.68 and 80.55 percent.

31 / 70



Confidence Interval v.s. Prediction Interval
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Model and Assumptions Checking: Three problems

1. How good the regression line is?

2. Is the error term ε really normally distributed?

3. Is the assumption that variances of ε1, ε2, .., εn are the same true?
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Problem 1: How good the regression line is?

I In simple liear regression, this problem can be transferred to
how strong Y and x are linearly correlated. If they have a close
linear correlation, the model should work very well. If not, we
get a bad model.

I sample Coefficient of Correlation is defined as

r =

∑n
i=1(xi − x)(Yi − Y )√∑n

i=1(xi − x)2
∑n

i=1(Yi − Y )2
=

SSxy√
SSxxSSyy

.

I r ∈ [−1, 1].
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Coefficient of Correlation
The plot in the top left corner has r = 1; the plot in the top right
corner has r = −1; the plot in the bottom left and right corner have
r ≈ 0;
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Coefficient of Determination

I Coefficient of Determination, denoted by r2, measures the
contribution of x in the predicting of y . (Sometimes it is called
Regression R-square.)

I Define

SSTO =
n∑

i=1

(Yi − Y )2,SSE =
n∑

i=1

(Yi − Ŷi )
2

I If x makes no contribution to prediction of y , then β1 = 0. In
this case,

Y = β0 + ε.

It can be shown that Ŷi = β̂0 = Y , and SSE = SSTO.

I If x contribute to prediction of Yi , then we expect
SSE << SSTO. In other words, the independent variable x
“explain” significant amount of variability among data.
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Coefficient of Determination

I Intuitively, SSTO is total sample variation around Y , and SSE
is unexplained sample variability after fitting regression line.

I Coefficient of determination is defined as

r2 =
SSTO − SSE

SSTO
=

Total Variability - Unexplained Variability

Total Variability

which can be understood as the proportion of total sample
variance explained by linear relationship.

I In simple linear regression, the coefficient of determination
equals to the squared sample coefficient of correlation between
x and Y .
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Removal Project Example

We can use command cor to calculate sample coefficient of
correlation. The coefficient of determination r2 is called Multiple
R-squared in the summary of simple linear regression.

> fit<-lm(moisture~filtration.rate)
> summary(fit)

Residual standard error: 0.6653 on 18 degrees of freedom
Multiple R-squared: 0.7999, Adjusted R-squared: 0.7888
F-statistic: 71.97 on 1 and 18 DF, p-value: 1.052e-07

> r <- cor(filtration.rate,moisture)
> r^2
[1] 0.7999401
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Problem 2: Is the Error Term Really Normally Distributed?

I The residuals from a regression model are ei = yi − ŷi ,
i = 1, 2, . . . , n., where yi is an actual observation and ŷi is the
corresponding fitted value from the regression model.

I Analysis of the residuals is frequently helpful in checking the
assumption that the errors are approximately normally
distributed with constant variance, and in determining whether
additional terms in the model would be useful.

I As an approximate check of normality, we can use apply the fat
pencil test to the normal qq plot of residuals.
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Normal qq plot for Removal Project Example

I Normal qq plot for removal project
resid <- residuals(fit)
qqnorm(resid)
qqline(resid)

I What is your conclusion?
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Problem 3: Are the variances of ε1, ε2, .., εn Equal?

We use residual plot to check this assumption. Residual plot is simply
the scatterplot of residuals ei ’s and predicted values. For example,
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Residual Plots

I Pattern (a) represents the ideal situation.

I Pattern (b) represents the cases where the variance of the
observations may be increasing with the magnitude of yi or xi .
Pattern (b) and (c) represents the unequal variance cases.

I Pattern (d) indicates the linear relationship between E (Yi ) and
xi is not proper. We need to add higher order term, which
requires multiple linear regression.
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Example: Electricity Consumption

An electric company is interested in modeling peak hour electricity
demand (Y ) as a function of total monthly energy usage (x). This is
important for planning purposes because the generating system must
be large enough to meet the maximum demand imposed by
customers.

electricity <- read.table(file="D:/electricity.txt",head=TRUE)
# Define variables
monthly.usage = electricity[,1]
peak.demand = electricity[,2]
# Fit the model
fit = lm(peak.demand ~ monthly.usage)
summary(fit)

# Plots were constructed separately
# Scatterplot
plot(monthly.usage,peak.demand,xlab = "Monthly Usage (kWh)",

ylab = "Peak Demand (kWh)", pch=16)
abline(fit)
# Residual plot
plot(fitted(fit),residuals(fit),pch=16,

xlab="Fitted values",ylab="Residuals")
abline(h=0)
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I The residual plot shows clearly a “megaphone” shape, which
indicates that the equal variance assumption is violated.

I Widely used variance-stabilizing transformations include the use
of
√
y , log y , or 1/y as the response.

I Let us try
√
y as the response.
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Transforming the Response

You can use sqrt(peak.demand) in R to transform the response
variable directly.

# Fit the transformed model
fit.2 <- lm(sqrt(peak.demand) ~ monthly.usage)

# Plots were constructed separately
# Scatterplot
plot(monthly.usage,sqrt(peak.demand),xlab = "Monthly Usage (kWh)",

ylab = "Peak Demand (kWh): Square root scale", pch=16)
abline(fit.2)
# Residual plot
plot(fitted(fit.2),residuals(fit.2),pch=16,

xlab="Fitted values",ylab="Residuals")
abline(h=0)
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I The residual plot looks much better.

I Model interpretation:
√
Yi = β0 + β1xi + εi .
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Transformation of Variables

I Variable transformation can be used in multiple situations (not only
in variance-stabilizing) to make the simple linear regression available.

I For example,
Y = β0e

β1xε

I Clearly, Y and x are not linearly related. Let’s check its shape:
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Transformation of Variables

I If we take a logarithmic ransformation to the both side of the
equation of Y = β0e

β1xε, then

log(Y ) = log(β0e
β1xε) = log(β0) + β1x + log(ε)

I If we denote Y ∗ = log(Y ), β∗
0 = log(β0) and ε∗ = log(ε), the

equation becomes
Y ∗ = β∗

0 + β1x + ε∗

I Now, the relation between Y ∗ and x is linear! A nonlinear function,
which can be expressed as linear function (straight line) by using a
suitable transformation, is called intrinsically linear.
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Tranfer Functions to Linear

1. Y 2 = β0 + β1x + ε

2. Y =
√
β0 + β1

x + ε

3. Y = 1
eβ0+β1x+ε

4. Y = x
β0x+β1+xε

5. Y = β0x
β1ε

6. Y = β0β
x
1 ε
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Transformation Example

Suppose we are given a dataset and we want to investigate the relation
between two variables, X and Y . We fit the data with simple linear
regression with lm() and R gives

> fit1 <- lm(y~x)

> summary(fit1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.92 7.01 -2.556 0.0138 *

x 192.52 12.22 15.760 <2e-16 ***

Residual standard error: 25.13 on 48 degrees of freedom

Multiple R-squared: 0.8381, Adjusted R-squared: 0.8347

F-statistic: 248.4 on 1 and 48 DF, p-value: < 2.2e-16

Are you happy with the results?
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Transformation Example

Let’s check the scatter plot (left) and residual plot (right)
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Transformation Example

I The scatter plot (left) shows that X and Y are not linearly related!

I The residual plot shows that the variance of the residual changes
with different ŷ , indicating that the equal variance assumption is
violated.

I Even thoguth we are happy with the regression model, it turns out
to be a bad one.
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Transformation Example

I Let’s try the log transformation to the Y, which means we denote
Y ∗ = log(Y ) and fit the model in R using the new Y ∗.

> fit2 <- lm(log(y) ~ x)

> summary(fit2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.58767 0.05092 50.82 <2e-16 ***

x 2.87523 0.08873 32.40 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1825 on 48 degrees of freedom

Multiple R-squared: 0.9563, Adjusted R-squared: 0.9554

F-statistic: 1050 on 1 and 48 DF, p-value: < 2.2e-16
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Transformation Example

Let’s check the scatter plot of X v.s.log(Y ) (left) and residual plot (right)

Now, are you truly happy?
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Box-Cox Transformation

I You might ask ”What is the best transformation we should use?” In
the last example, log transformation seems to work well, but is there
a better one?

I In 1964, Box and Cox suggested the following transformations

BoxCox(Y ) =

{
Yλ−1
λ , λ 6= 0

log(Y ), λ = 0

I When λ ≈ 0, Yλ−1
λ ≈ log(Y ).

I Box-Cox transformation depends on the parameter λ, which is
unknown. How to estimate the best λ?
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Find Best λ

Let’s use the previous dataset to learn how to find the best λ in R.

library(MASS) # We need to MASS package first

boxcox(lm(y~x), lambda=seq(0,1,by=0.1))
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Find Best λ

It seems the best λ is in [0, 0.1]. Let’s adjust the range of λ in R.

boxcox(lm(y~x), lambda=seq(0,0.1,by=0.01))
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Find Best Transformation

I R suggests us the following transformation

BoxCox(Y ) =
Y 0.04 − 1

0.04

I Remark: λ = 0.04 is very close to 0, and when λ ≈ 0, the log
transformation log(Y ) is the best.

I What we have done in the previous example is actually not far away
from the best!
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Logistic Regression

I So far, we have learnt how to find a good simply linear regression
model to fit the data, whose response variable Y is quantitative, e.g.
continuous numbers.

I However, in reality, we might be interested in the case that the
response variable Y is binary, e.g. success and failure, 0 and 1.

I For example, we want to predict whether it will rain tomorrow, or
whether the O-ring will fail in the space shuttle launch, etc.
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Bernoulli Response Variable

I In chapter 2, we have learnt the Bernoulli trials, which meet the
following properties:

1. each trial results a ”success” or ”failure”
2. trials are independent
3. P(success) is the same for each trial, denoted as p, 0 < p < 1.

I In logistic regression, we have each response variable Yi is a
Bernoulli random variable, with E (Yi ) = P(Yi = 1) ≡ pi .
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Failure of Interpretation

I If we still use the normal simple linar regression method to regress
Y , the results might not be interpretable. For example,
Yi = β0 + β1xi + εi with E (εi ) = 0 gives

E (Yi ) = β0 + β1xi

where E (Yi ) = P(Yi = 1) = pi .

I It is possible that the fitted value, say β̂0 + β̂1xi , is greater than 1 or
less than 0.

I By the Kolmogorov Axioms (Chapter 2 page 17), we cannot have
probability greater than 1 or less than 0! Therefore, we are not able
to interpret the regression result properly.
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Logit Function

I Logit function is frequently used in mathematics and statistics. It
is defined as

logit(p) = log

(
p

1− p

)
, 0 < p < 1

I The reason it is popular is that it can transfer a random variable
from (0, 1) to the entire real line.

I Note that when p is close to 0, logit(p) is close to −∞, and when p
is close to 1, logit(p) is close to ∞.
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Shape of the Logit Function
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Logistic Regression Model

I Using the property of the logit function, the logistic regression
model is that

log

(
E (Yi )

1− E (Yi )

)
= log

(
pi

1− pi

)
= β0 + β1xi

I Solving for pi , this gives

pi =
eβ0+β1xi

1 + eβ0+β1xi
=

1

1 + e−(β0+β1xi )

I Remark: logistic regression is NOT a model simply transfer Yi with
the logit function. The logit transformation is conducted with
respect to E (Yi ).
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Reasons to Use Logistic Regression

Logistic regression is one the most commonly used tools for applied
statistics and discrete data analysis. There are basically four reasons for
this.

1. Tradition (David Cox 1958, the same Cox in CoxBox).

2. p
1−p is called odds, so that the logit function, log

(
p

1−p

)
, is the log

odds, which plays an important role in the analysis of contingency
tables.

3. It ’s closely related to ”exponential family” distributions, which is
massively used in many contexts, e.g. engineering, physics, etc.

4. It often works surprisingly well!
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Example: O-Ring Failure

The Space Shuttle Challenger disaster occurred on January 28, 1986,
when the NASA space shuttle orbiter Challenger broke apart 73 seconds
into its flight, leading to the deaths of its seven crew members.
Disintegration of the vehicle began aftter an O-Ring seal in its right solid
rocket booster failed at liftoff.
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Example: O-Ring Failure

O-Ring seal failed becuase the launch temperature is lower than
expected. Therefore, it is critical to carefully test the reliability of O-Ring
under different circumstance. Here we have 24 data points, including the
lauching temperature and whether at least one O-Ring failure has
occured.

Table : My caption

O-Ring Failure Temperature
1 52
1 56
1 57
0 63
0 66
... ...
0 81
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Example: O-Ring Failure

# input data

oring <- c(1,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,0,0,0,0,0,0)

temperature <- c(53, 56, 57, 63, 66, 67, 67, 67, 68, 69, 70,

70, 70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 80, 81)

# fit the logistic regression model

fit <- glm(oring ~ temperature, family=binomial)

summary(fit)

# R output

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 10.87535 5.70291 1.907 0.0565 .

temperature -0.17132 0.08344 -2.053 0.0400 *
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Example: O-Ring Failure

I The fitted logistic regression model is

log

(
pi

1− pi

)
= 10.875− 0.171xi

I It is equivalent to

E (Yi ) = pi =
1

1 + e−(10.875−0.171xi )

I Remark: in testing H0 : β1 = 0 v.s. Ha : β1 6= 0, the p-value is 0.04,

indicating that the linear relationship between log
(

E(Yi )
1−E(Yi )

)
and x is

significant.
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Example: O-Ring Failure

I The actual temperature at the Challenger launch was 31 F.

pi =
1

1 + e−(10.875−0.171(31))
= 0.996

I The probability that at least one O-Ring failure is 99.6%! It is
almost certainly going to happen!

I The Odds Ratio is eβ̂1 = e−0.171 = 0.843, so every 1 degree
increase in temperature reduces the odds of failure by 0.843.

I It is interesting to note that all of these data were available prior to
launch. However, engineers were unable to effectively analyze the
data and use them to provide a convincing argument against
launching Challenger to NASA managers.
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